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A higher precision in the calculation of the velocity field has been achieved by determining
functions of the fifth order in the expansions for velocities. Since the solution was carried out
in a new way and quite generally, it turned out that functions of higher orders could also be
found by the proposed method if neczssary. The assumption that the functions of higher order
may influence the individual velocity courses, especially in the inletregion, was substantiated.

A rotating electrolyser with an axial electrolyte inlet! 2, the velocity field of which will be cal-
culated bzlow, consists of two disc-shaped electrodes rotating at the same angular velocity
around a common vertical axis. An electrolyte is fed into the space between them through the
axis. Interaction between the radial flow and rotation of the discs gives rise to a strong current
at each electrode resulting in a hydromechanical separation of the anolyte and catholyte even
when the interelectrode distance is as small® as 0-8 mm. Such a small distance s of great advantage
in the case of low electrolyte conductivity. A theory of this system was first derived by Kreith
and Peube**>, who also carried out the first calculation of the velocity field by solving the Navier-
-Stokes equation for the simple case « = 1. Later, Kreith® published the solution for various
values of the Taylor criterion « ranging from 0 to = and it turned out that the radial velocity
in the central plane could be equal to zero. Jansson, Marshall and Rizzo? considered the case
a > n and deduced that the maximum radial velocity shifts towards the discs with increasing .
whereas the velocity should be equal to zero in the plane of symmetry. Measurements? by the
Doppler anemometer with a laser source substantiated the existence of a rapid streaming at the
wall, but strong back streams (depending on the radius) were found, in addition, in the central
plane region, which could not be derived from the theory involving functions of the first and
third order.

Further experimental work>'7 showed that the rotation of the discs causes sucking of the
liquid between them, the volume rate of flow being surprisingly high, depending on the angular
velocity but not on the interelectrode distance. To characterize the mass transfer to the rotating
electrodes, the rotation Reynolds number was proposed3.

The present work deals with the calculation of the velccity field between the rotat-
ing discs. Up to now, relations with fur.ctions of the first ard third crder were ob-
tained from the solution of the Navier-Stokes equation, however Jansson® suggested
that under certain conditions higher-crder terms are required to cbtain a realistic
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description of the system considered. We succeeded in deriving implicitly functions
of the fifth order and thus obtained a more accurate solution as shown below.

THEORETICAL

The system considered is shown schematicalyin Fig. 1 together with a cylindrical
coordinate system. Both discs have the same angular velocity, both the density
and the kinematic viscosity of the liquid are constant. The velocity field is described
by the Navier-Stokes equation, which gives for the velocity components in the
dimensionless form
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We assume® that the solution of the above system of equations can be written —
with regard to the continuity equation — in the form
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Fic. 1

Scheme of rotating electrolyser with axial electrolyte inlet. P(0,0,0) origin of coordinates,
u radial velocity, w normal velocity, ¥ tangential velocity
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o= 3 Moy @) a0 e ©)
p= (ig;) (i;_ i ‘(z) + h(z)In r) (7)

On analysing this system, we arrive at conditions that must be satisfied by the func-
tions f, g, and h. Owing to symmetry with respect to the vertical rotation axis and
since we assume also symmetry with respect to the horizontal axis, we have for even
n values

fl2) =fiza)=...ful2) =0,
foa) =fia)=...fiz) =0,
go(2) =9g5(z)=...9.2) =0,
hoy(z) = hy(z) = .. hy_y(z) =0.

Further, for odd n values (n = —1,1,3...) f,(z) is an odd function, g,(z) and
h,_,(z) are even functions. The boundary conditions are

f(£0)=0 for n=—-1,0,2,3,4,...; fi(«)=aRe,
fi(x®) =0 for n=-1,0,1,2,...

gu(£a) =0 for n=0,1,2,...; g_,(tx)=1.

By introducing these conditions, the expansions for the velocities and static pressure
(4)—(7) are considerably simplified. Then, we introduce them into equations (1)—(3)
and rearrange the resulting equations by putting together the terms with equal
powers of r. Thus, we obtain

(n+3)/2 )
a“r_z"'s = a“r + alzr_l + a13r_3 + ... = 0,
i=1
(n+3)/2 .
Y oaur it =a,r+anrt a4 =0, (8

i=1
(n+3)/2
asyr* +azgInr+ Y ayr

i=

=2i+4 _ 0
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The unknowns a;;in a given column are polynomials involving functions f(z), g(z),
and h(z)at most of the (2j — 1)-th order. The value of n is equal to the highest order of
these functions and can attainthe valuesof —1, 1,3,5 ... It can be assumed that the
system of equations (8) will have a single solution just when all coefficients a;; will be
equal to zero. Then, the coefficients a;(,+3)/2> A2(n+3y/2> @Nd @3¢, 43),2 €aN serve us to
calculate the functions f,(z), g,(z), and h,_,(z) (functions of n-th order).If nis higher
than —1, we can derive recurrent formulae for the functions of the n-th order calculat-
ed from the known functions of the n — 2, n — 4, and lower orders. After rearrange-
ment, we obtain a system of differential equations

ZZ["Jf./f; +G-0)fifi—99]-(n-=-3)(n-1)f_, =
i
=29, + fi'+(n—1)h,_,, 9)
YY[G=USfigi— (=1 figil+(n=3)(n=1)ga2=2fs —gr, (10)
i
220 =D)(=j+2)fifJ+(n=3)fi 2+ (n—5)(n=3)foa=h,_,.
[
(1)
Here,the summation indices acquire values beginning from 1 and satisfying the condi-
tion i + j + 1 = n for Eqgs (9) and (10) and i + j + 3 = n for Eq. (11); they are

always odd.

On differentiating Eq. (9) twice with respect to z and using Eqs (10) and (11)
we eliminate the functions g, and h,_,; after rearrangement we arrive at the fol-
lowing differential equation of the fifth order:

W +afa= Y Y [-ifify =G+ DA +0G =200+ 0 =)V -

(i+i+12n)
— gi9; — 2995 — 9:9; + 2(j — 1) fig; — 2(i — 1) figi] —(n — 1).
Z Z (=D - +2(fif] + fifH] + (n = 1) (n = 3)[2g.-2 — 2/,
e (= - i (12
This can be put into the simple form
n) +4fs=R,, (13)

where R, denotes the right-hand side of Eq. (12). Hence it follows an important
conclusion that the function f of any order is defined formally by the same dif-
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ferential equation (only its right-hand side varies). For an analytical solution of this
problem, it is sufficient to find a particular integral satisfying the right-hand side,
since the solution of the corresponding homogeneous differential equation can easily
be found. Eq. (13) also suggests that the functions f, g, and h can be calculated nume-
rically (the higher-order functions can be determined if necessary).

A solution for the functions of at most the third order® can be shortened and modi-
fied to take the form

fLi=0, fi=A,coshzcosz + B,sinhzsinz,
f3 = Ascosh zsin z + By sinh z cos z — (A} + B})(sinh 2z — sin 22)/20 +
+ (h/8) z f1(2),
f3 =(A, + B;y)cosh zcos z + (A3 — B3)sinh zsin z — (4} + B})(cosh 2z —
— cos 22)[10 + (h/8) (z f1(z) + f1i(2)],
g-1=0, g,= -3 - 1],
g9s = —3[f5'(2) - £3'(0) + (fi(2)* + (9:(2))°],
ho, =05, h=f{(a), h,=-05f(x).

The constants A, and B, are determined by the boundary conditions

fi(®) = aRe, fi{(«)=0.
f(®) =0,  fiy(x)=0.

Our task is to find the functions of the fifth order, whereby the accuracy of the
calculation should be improved. Therefore, we have to solve Eq. (I 3) with the right-
-hand side

Ry = (—4ff1 + 2f5f1 — 29195 — 16f;)" + 4g5f + 1695 — 4f3g; .  (14)

Again, we assume that the function f5(z) is given by the sum of the solution of the
corresponding homogeneous differential equation and particular integral Py(z):

fs = Ascosh zsin z + Bgsinh zcos z + Py(z) . (15)
Accordingly,

fs = (As + Bs)cosh zcos z + (As — Bs)sinh zsin z + Py(z). (16)
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The problem consists in finding the particular integral. The right-hand side of Eq. (14)
is rearranged and after analysing the properties of the functions of the fifth order,
the first derivative of the particular integral is found in the form (resembling the
modified expression R;)
P5 = K,[2z(cosh 2z — cos 2z)]" + K, cosh 2z + K3 cos 2z +

+ K,[2(cosh 2z — cos 22)]” + K sinh 2z sin 2z + K¢ cosh 2z cos 2z +

+ K,(z cosh z cos z)' + Kg(z sinh z sin z)’ + K, sinh 3zsin z +

+ Ko sinh zsin 3z+ K, cosh 3z cos z + K, cosh z cos 3z + K,;(z%f,) +

+ Ka(z f1) + Kis(2f1) + Ky(2f1) + K7 - (17)

The constants K, through K, are defined as follows:

K, = —(A} + B})h/160 = —Q,h/8, Q, = (4} + B2))20,

K, = {o(—54,4; — 2B,A; — 24,B; + 5B,B; + 56Q,),

K3 = {5(24,A; + 5B;A; + 54,4, — 2B,B; + 56Q,),

Ky = Qoh/4, K = 11h(B} — A})/480, K, = 11hA,B,[240,

K, = $[4QoA, — 4hB, + 24(A; — B;) + h(4; + Bj)],

Ks = #[4hA4, — 4Q,B, — 24(A; + B;) + h(4; — B3)],

Ky, = Q,(B; +34,), Ko = Q\(B; —34,), K;; = Q,(4, — 3B)),
Ky, = Q,(4;, + 3B,), Q, = 9Q,/80 = 9(A? + B)/1 600,

K3 = —3h/8, K., =3h/32, K;s=h*128, K, = —3h*128,
K,; = 3(4hA,B, — h* — 8h, — A A5 — B,A; + A,B; — B,B;).

The constants A5 and B are found from the boundary conditions
fs(@) =0, fs(@)=0.
The functions g5 and h, are found from Eqs (10) and (11):

gs = H(=4fifs + 2f3f1 — 29,95 — 16f5 — f5' + f{' (@),
hy = 2f5 — 3f5'(a) .
A program for the numerical calculations was written in FORTRAN and the solu-
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tion was carried out on an ICL 4-72 type computer for a = 7-0 and several values
of the Re number. The velocity field was obtained in the whole cross section between
the disc electrodes up to a distance Fla = 25.

RESULTS

The results obtained are in support of the assumption that the functions of the fifth
and higher orders influence the velocity field only for 7/la < 25, i.e. for the inlet
region, and for higher values of « and Re. E.g., for « = 7 and Re = 41 the fifth-order
functions have no influence on the calculated radial velocity u even for Fla = 10.

A comparison of the previous® and present calculations for Re = 1243 and Fla =
= 18 (Fig. 2) shows that the dimensionless radial velocity is roughly the same. A small
difference consists in that close to the central plane of symmetry (z/a = 0) the radial
velocity attains negative values, i.e. the liquid flows towards the inlet orifice. The
point at which u = 0 (where u changes its sign) is somewhat shifted towards the
central plane (from Z/a = 0'5 to 0-45), and the maximum value of u is by about 12;
lower. For Fla = 25, the velocity fields are practically the same.

A comparison of the previous® and present calculations for Re = 2 072 and 7la =
= 18 and 25 (Figs 3 and 4) again indicates the possible existence of a back flow close
to the central plane, which becomes apparently more pronounced when proceeding
towards the inlet of the liquid. The point of zero radial velocity is again scmewhat
shifted towards the central plane, namely to 0-4 ard 0-45 for F/a = 18 and 25, res-
pectively. The maximum value of u is by about 10% lower. For lower values of #/a,
the term with the function f;(z) becomes important for the radial velocity field. Since
this function shows large oscillations close to the disc (for Z/a approachirg a), the
calculation givesin thisregion strong back flows, which does rot correspord to reality.
A similar behaviour was observed in the case of the calculation irnvolving third-order
functions, although to a lesser extent. The values of u for various values cf Re are
illustrated in Fig. 5, showing a pronounced influer.ce of the Re number.

FiG. 2

Comparison of the calculated radial velo-
city for a = 7, Re = 1243, rla= 18. 1 Cal-
culation using functions of the third ordera,
2 calculation using functions of the fifth
order
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The course of the normal velocity w is shown in Figs 6 and 7. There are two dif-
ferences against the previous calculation®: for higher Re values, the absolute values
of w are about twice as large, which is however unimportant since the highest values
of w are much lower than those of the radial and tangential velocities and they
decrease rapidly with increasing r. Secondly, the point of w = 0 is shifted from
Z/a = 0-6 to 0-53, which partly corresponds to the shift of the point of u = 0. Hence,
mixing of the liquid at the discs with that at the central plane should not take place.
The maxima and minima of the curves are shifted only very little towards the central
plane.

1 —

l

4

2/a {

/0 ]

| i

\ |

0 : - |
0 u 018 018

FiG. 3 FiG. 4

Comparison of the calculated radial velocity Comparison of the calculated radial velocity
for «x = 7, Re = 2072, r/a = 18. 1 Calcula- for « = 7, Re = 2072, r/a = 25. 1 Calcula-
tion using functions of the third order®, tion using functions of the third order®,
2 calculation using functions of the fifth order 2 calculation using functions of the fifth order

FiG. 5
Radial velocity calculated for « = 7, r/a=18

by using fifth-order functions. Values of Re:
12900; 22072; 31243; 4414, 541
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The course of the dimensionless tangential velocity v in a cross-section between
the discs is shown in Figs 8 and 9 (the ratio of v[v,, is plotted, where vy, is the maxi-
mum value of v on the disc surface). These curves are almost identical to the preceding
ones® The difference is that at higher Re values the absolute values are higher.
The back tangential flow for Re = 2 900 represents more than 909 of the distance
between the discs. The points of the minima on the curves have not changed appre-
ciably.

Whereas the velocity fields show no essential changes, the static pressure is dif-
ferent (Fig. 10). For low Re values and large distances from the inlet, the difference
of p—p, changes only little (p, is the static pressure at 7/a = 25), however at lower
distances F/a the newly calculated term in the expansion (7) becomes important
(its value is positive for a = 7). Therefore, all curves are directed towards infinity.
It may be assumed that a further term could change this situation, however the values
of p—p, beginning from a certain distance F/a are sufficiently accurate regardless
of further terms in the expansion (7). Curves 1 and 3 in Fig. 10 increase slowly
from Fla = 13 corresponding to sucking of the liquid between the rotating discs.

6 10
10°w
10°w
04
2L
]
-2l ] 04
| ! | I | -04t—--- —
0 2/0 10 0 z/0 10
FiG. 6 FiG. 7
Normal velocity calculated for « = 7, r/a = Normal velocity calculated for « = 7, rfa =
= 18 by using fifth-order functions. Values = 25 by using fifth-order functions.Values
of Re: 12900; 22072; 31243; 4414 of Re as in Fig. 6

Collection Czechoslovak Chem. Commun. [Vol. 49] [1984]



Calculation of the Velocity Field 1131

10 T T T
- 7
V/Vmox /
7
04 . _ _ _ <A
3 — . - /
0 /
L / _
_____ /
]
-18 _
L 0I I | il |
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FiG. 8 FiG. 9
Tangential velocity (v/v,,,) calculated for Tangential velocity (v/v.,,) calculated for
o« = 7, rla= 25 by using fifth-order func- a= 7, rla= 25 by using fifth-order func-
tions. Values of Re asin Fig. 6 tions. Values of Re as in Fig. 6
T
2_
P- /—3 L
FiG. 10
Dimensionless static pressure (p—py) cal-
culated for a = 7 by using fifth-order func-
tions. Values of Re: 1 290; 2 414; 3 622; 4 829; -4 6 — L 2‘
51243 r/a 0

\
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For Re = 829, curve 4 decreases to zero from F/a = 13 to 25, and curve 5 for
Re = 1243 is decreasing. It can hence be estimated that for « = 7 and zero hydro-
dynamic resistance in the inlet the rate of flow between the discs will correspond
to Re = 800—900.

DISCUSSION

A comparison of the results obtained with functions of the fifth and third order®
for the Taylor criterion « = 7 shows that the functions of the fifth order used in the
present work do not lead to principally different velccity fields. They play almost
no role in the region 7la < 25 (beyond the inlet region), while for lower values
of 7/a they lead to some changes of absolute values and characteristic poirts. The
static pressure is markedly influenced, the newly calculated term in the expansion (7)
being positive so that all curves in Fig. 10 increase towards + oo. The correctness
of the calculation cannot be judged since a comparison with experiments is lacking.
It can be assumed that the limiting values of F/a given® as 25 shifted scmewhat
towards the inlet region, i.e. to the centre of the discs. Although a calculation cf func-
tions of a still higher order appears possible, no significant improvement cf the
theory can be expected.

LIST OF SYMBOLS

half-distance of the discs

static pressure

dimensionless static pressure (ﬁ/avf)

volume rate of flow

radius

dimensionless radius (ar/a)

Reynolds number (av, /v)

radial velocity

dimensionless radial velocity (u/t,)

tangential velocity

dimensionless tangential velocity (v/v,)

,»r, parameters equal to Q/4na’ and (wv)!/?, respectively
normal velocity

dimensionless normal velocity (w/v,)

distance from central plane

dimensionless distance from central plane («z/a)
Taylor number, equal to a(t:o/v)l/2

kinematic viscosity

angular velocity
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