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A higher precision in the calculation of the velocity field has been achieved by determining 
functions of the fifth order in the expansions for velocities. Since the solution was carried out 
in a new way and quite generally, it turned out that functions of higher orders could alw be 
found by the proposed method if nec·;::ssary. The assumption that the functions of higher order 
may influence the individual velocity courses, especially in the inlet region, was substantiated. 

A rotating electrolyser with an axial electrolyte inlet1•2 , the velocity field of which will be cal­
culated b;::low, consists of two disc·shaped electrodes rotating at the same angular velocity 
around a common vertical axis. An electrolyte is fed into the space between them through the 
axis. Interaction between the radial flow and rotation of the discs gives rise to a strong current 
at each electrode resultir.g in a hydromechanical separation of the anolyte and catholyte even 
when the interelectrode distance is as small3 as 0·8 mm. Such a small distanceis of great advantage 
in the case of low electrolyte conductivity. A theory of this system was first derived by Kreith 
and Peube4 •5 , who also carried out the first calculation of the velocity field by solving the Navier­
-Stokes equation for the simple case IX = 1. Later, Kreith6 published the solution for various 
values of the Taylor criterion IX ranging from 0 to 11 and it turned out that the radial velocity 
in the central plane could be equal to zero. Jansson, Marshall and Rizz02 considered the case 
IX > 11 and deduced that the maximum radial velocity shifts towards the discs with increasing IX. 

whereas the velocity should be equal to zero in the plane of symmetry. Measurements2 by the 
Doppler anemometer with a laser source substantiated the existence of a rapid streaming at the 
wall, but strong back streams (depending on the radius) were found, in addition, in the central 
plane region, which could not be derived from the theory involving functions of the first and 
thi rd order. 

Further experimental work3 •7 showed that the rotation of the discs causes sucking of the 
liquid between them, the volume rate of flow being surprisingly high, depending on the angular 
velocity but not on the interelectrode distance. To characterize the mass transfer to the rotating 
electrodes, the rotation Reynolds number was proposed3 • 

The present work deals with the calculation of the veJccity field between the rotat­
ing discs. Up to now, relations with fur.ctions of the fint ar.d third order were ob­
tained from the solution of the Navier-Stokes equation, howt;ver Janssons suggested 
that under certain conditions higher-order terms are rcquin:d to cbtain a realistic-
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description of the system considered. We succeeded in deriving implicitly functions 
of the fifth order and thus obtained a more accurate solution as shown below. 

THEORETICAL 

The system considered is shown schematicaly in Fig. 1 together with a cylindrical 
coordinate system. Both discs have the same angular velocity, both the density 
and the kinematic viscosity of the liquid are constant. The velocity field is described 
by the Navier-Stokes equation, which gives for the velocity components in the 
dimensionless form 

u OU + w OU _ (~)2 v2 = op ex [0 (OU U) 02UJ 
or OZ Re r - or + Re or or +; + OZ2 ' 

(1) 

(2) 

(3) 

We assumes that the solution of the above system of equations can be written -
with regard to the continuity equation - in the form 

ex ~ Ii ( z ) ex [f' () f' ( ) - 1 f' ( ) J U = - 1.- -.- = - r -1 z + 0 z + r 1 z + ... , 
Re i=-l r' Re 

(4) 

ex n f~) ex 
w = - L (i - 1)-~- = - [-2f-1(Z) - r- 1 fo(z) + ... J, 

Re i = - 1 r' + 1 Re 
(5) 

FIG. I 

Scheme of rotating electrolyser with axial electrolyte inlet. P(O,O,O) origin of coordinates, 
u radial velocity, w normal velocit), v tangential velocity 
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(6) 

p = (~)2 ( ± hi~~(Z) + h(z) In r) . 
Re i= -1 r' 1 

(7) 

On analysing this system, we arrive at conditions that must be satisfied by the func­
tions f, g, and h. Owing to symmetry with respect to the vertical rotation axis and 
since we assume also symmetry with respect to the horizontal axis, we have for even 
n values 

fo(z) = f2(Z) = ... fn(z) = 0, 

fb(z) = f~(z) = ... f~(z) = 0, 

go(z) = g2(Z) = ... gn(z) = 0, 

Ll(Z) = hl(Z) = ... hn-l(Z) = o. 

Further, for odd n values (n = -1,1,3 ... ) fn(z) is an odd function, gn(z) and 
hn -1 (z) are even functions. The boundary conditions are 

fn(±ac) = 0 for n = -1,0,2,3,4,._.; fl(ac) = acRe, 

f~(±ac) = 0 for n = -1,0, 1,2, ... 

gn(±ac) = 0 for n = 0,1,2, ... ; g-1(±ac) = 1. 

By introducing these conditions, the expansions for the velocities and static pressure 
(4)-(7) are considerably simplified. Then, we introduce them into equations (1)-(3) 
and rearrange the resulting equations by putting together the terms with equal 
powers of r. Thus, we obtain 

(n+3)/2 
,,-2i-3 -1 -3 0 
1... alir = allr + a12r + a 13r + ... = , 
i= 1 

(8) 

(n+3)/2 
2 + I +" -2i+4 0 a 31 r a32 n r 1... a3ir =. 

i=3 
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The unknowns aij in a given column are polynomials involving functions fez), g(z), 
and h(z)atmost of the (2j -l)-th order. The value of n is equal to the highest order of 
these functions and can attain the values of -1, 1,3,5 ... It can be assumed that the 
~ystem of equations (8) will have a single solution just when all coefficients aij will be 
equal to zero. Then, the coefficients a l (0+3)/2,a 2 (0+3)12, and a 3 (0+3)/2 can serve us to 
calculate the functions fo(z), 90(z), and ho_l(z)(functions of n-th order). If n is higher 
than -1, we can derive recurrent formulae for the functions of the n-th order calculat­
ed from the known functions of the n - 2, n - 4, and lower orders. After rearrange­
ment, we obtain a system of differential equations 

I I[ - jfJj + U - 1) f:'!j - gigJ - (n - 3) (n - 1) f~-2 = 
i j 

= 2go + f~" + (n - 1)ho- l , (9) 

I I[U - 1) f;gj - (i - 1) fig;] + (n - 3) (n - 1) go-2 = 2f~ - g~, (10) 
i j 

I IW - 1)(i - j + 2) fJj] + (n - 3) f~'-2 + (n - 5)(n - 3y fn-4 = h~-1 . 
i j 

(11 ) 

Here, the summation indices acquire values beginning from 1 and satisfying the condi­
tion i + j + 1 = n for Eqs (9) and (10) and i + j + 3 = n for Eq. (11); they are 
always odd. 

On differentiating Eq. (9) twice with respect to z and using Eqs (10) and (11) 
we eliminate the functions go and hn - I ; after rearrangement we arrive at the fol­
lowing differential equation of the fifth order: 

f~V) + 4/~ = I I [ - jf:fj" - U + 1) f:'!j + U - 2) /:"/; + U - 1) f~IV)fj -
i j 

(i+j+l=n) 

- g~gj - 2g;g; - gig) + 2U - 1) f:g j - 2(i - 1) fig;] -en - 1) . 

. I I [(i - 1) (i - j + 2) (iJj + fJj)J + (n - 1) (n - 3) [29n-2 - 2/:'-2 -
i j 

(i+j+3=n) 

- (n - 3)(n - 5) f~-4] . 

This can be put into the simple form 

(12) 

(13) 

where Rn denotes the right-hand side of Eq. (12). Hence it follows an important 
conclusion that the function f of any order is defined forma]Jy by the same dif-
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ferential equation (only its right-hand side varies). For an analytical solution of this 
problem, it is sufficient to find a particular integral satisfying the right-hand side, 
since the solution of the corresponding homogeneous differential equation can easily 
be found. Eq. (13) also suggests that the functions f, g, and h can be calculated nume­
rically (the higher-order functions can be determined if necessary). 

A solution for the functions of at most the third orderS can be shortened and modi­
fied to take the form 

f~ 1 = 0, f{ = A1 cosh z cos z + Bl sinh z sin z, 

f3 = A3 cosh z sin z + B3 sinh z cos z - (Ai + Bi) (sinh 2z - sin 2z)/20 + 
+ (h/8) z/;(z) , 

1~ = (A2 + B3) cosh z cos z + (A3 - B3) sinh z sin z - (Ai + Bi) (cosh 2z -

- cos 2z)/1O + (hI8) (z f~(z) + 1{(z)] , 

g-l = 0, g1 = -t[Jt(z) - ft(oc)] , 

g3 = -t[J;'(z) - f;'(oc) + (J;(Z»)2 + (g1(Z))2] , 

h_2 = 0'5, h = ft(rx) , h2 = -0·5f;'(rx). 

The constants An and Bn are determined by the boundary conditions 

fl(rx) = rxRe, f;(rx) = O. 

f~(rx) = O. 

Our task is to find the functions of the fifth order, whereby the accuracy of the 
calculation should be improved. Therefore, we have to solve Eq. (13) with the right­
-hand side 

Again, we assume that the function 15(z) is given by the sum of the solution of the 
corresponding homogeneous differential equation ar.d particular integral P 5(Z): 

f5 = A5 cosh z sin z + B5 sinh z cos z + P5(Z) . (15) 

Accordingly, 

f; = (A5 + Bs) cosh z cos z + (As - B5) sinh z sin z + p;(z). (16) 
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The problem consists in finding the particular integral. The right-hand side ofEq. (14) 
is rearranged and after analysing the properties of the functions of the fifth order, 
the first derivative of the particular integral is found in the form (resembling the 
modified expression Rs) 

P; = K1[2z(cosh 2z - cos 2z)J' + K2 cosh 2z + K3 cos 2z + 

+ K4[2(cosh 2z - cos 2z)J" + Ks sinh 2z sin 2z + K6 cosh 2z cos 2z + 

+ Klz cosh z cos z)' + Ks(z sinh z sin z)' + K9 sinh 3z sin z + 

+ K 10 sinh z sin 3z+ Kll cosh 3z cos z + K12 cosh z cos 3z + KI3(Z2/tY + 

+ KI4(Z /t)' + KlS(Z2/~)' + K I6(Z/{)' + Kl7 . (17) 

The constants Kl through Kl7 are defined as follows: 

KI = -(Ai + Bi) hj160 == - Qohj8, Qo = (Ai + BD/20, 

K2 = /o( -SAIA3 - 2BIA3 - 2AIB3 + SB1B3 + S6Qo) , 

K3 = T\r(2A IA3 + SB1A3 + SA 1A3 - 2BIB3 + S6Qo) , 

K4 = Qoh/4, Ks = llh(Bi - AD/480, K6 = llhA1Bd240, 

K7 = t[ 4QoAl - 4hBI + 24(A3 - B3) + h(A3 + B3)] , 

Ks = t[4hAI - 4QoBI - 24(A3 + B3) + h(A3 - B3)] , 

K9 = QI(B1 + 3A1) , K 10 = QI(B1 - 3A1) , Kll = Ql(A l - 3B1) , 

K12 = QI(A 1 + 3B1) , Ql = 9Qo/80 = 9(Ai + Bi)/1 600, 

K13 = -3h/8, Kl4 = 3hj32 , K 1S = h2j128 , K 16 = -3h2 j128 , 

K17 = t(thAIBI - h2 - 8h 2 - AIA3 - BI A3 + AIB3 - B1B3) • 

The constants As and Bs are found from the boundary conditions 

/s(cx) = 0, /~(cx) = O. 

The functions gs and h4 are found frcm Eqs (10) and (11): 

gs = -l( -4/:/; + 2/3/~ - 2g 1g3 - 16/; - /~" + /~"(cx)), 

h4 = 2/; - V;'(cx) . 

A program for the numerical calculations was written in FORTRAN and the solu-
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tion was carried out on an ICL 4-72 type computer for IX = 7·0 and several values 
of the Re number. The velocity field was obtained in the whole cross section between 
the disc electrodes up to a distance fla = 25. 

RESULTS 

The results obtained are in support of the assumption that the functions of the fifth 
and higher orders influence the velocity field only for fla ~ 25, i.e. for the inlet 
region, and for higher values of IX and Re. E.g., for IX = 7 and Re = 41 the fifth-order 
functions have no influence on the calculated radial velocity u even for fla = 10. 

A comparison of the previous8 and present calculations for Re = 1 243 and fl a = 
= 18 (Fig. 2) shows that the dimensionless radial velocity is roughly the same. A small 
difference consists in that close to the central plane of symmetry (zla = 0) the radial 
velocity attains negative values, i.e. the liquid flows towards the inlet orifice; The 
point at which u = 0 (where u changes its sign) is somewhat shifted towards the 
central plane (from zla = 0·5 to 0'45), and the maximum value of u is by about 12% 
lower. For fla = 25, the velocity fields are practically the same. 

A comparison ofthe previous8 and present calculations for Re = 2072 and ria = 
= 18 and 25 (Figs 3 and 4) again indicates the possible existence of a back flow close 
to the central plane, which becomes apparently more pronounced when proceeding 
towards the inlet of the liquid. The point of zero radial velocity is again scmewhat 
shifted towards the central plane, namely to 0·4 ard 0·45 for ria = 18 and 25, res­
pectively. The maximum value of u is by about 10% lower. For lower values of fla, 
the term with the function f~(z) becomes important for the radial velocity field. Since 
this function shows large oscilIations close to the di~c (for zla approaching IX), the 
calculation gives in this region strong back flows, which does rot correspord to reality. 
A similar behaviour was observed in the case of the calculation ir,volving third-order 
functions, although to a lesser extent. The values of u for various values cf Re are 
illustrated in Fig. 5, showing a pronounced influerce of the Re nurr,ber. 

10i:--~==;;;;::;;;;:;;;:==-----1 

ZIO 

i 
l_ 

/' 
/ 

1\ o 0 
u 

-----------_ .. _---

018 

FIG. 2 

Comparison of ,the calculated radial velo­
city for IX = 7, Re = 1243, ria = 18. 1 Cal­
culation using functions of the third orderS, 
2 calculation using functions of the fifth 
order 

------- ------------ _.-_ .. ---
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The course of the normal velocity w is shown in Figs 6 and 7. There are two dif­
ferences against the previous ca1culation8 : for higher Re values, the absolute values 
of ware about twice as large, which is however unimportant since the highest values 
of ware much lower than those of the radial and tangential velocities and they 
decrease rapidly with increasing r. Secondly, the point of w = 0 is shifted from 
z/a = 0·6 to 0'53, which partly corresponds to the shift of the point of u = O. Hence, 
mixing of the liquid at the discs with that at the central plane should not take place. 
The maxima and minima of the curves are shifted only very little towards the central 
plane. 

101---:-_-===:;:==;:::::===--'---~ 

'1/0 

FIG. 3 

Comparison of the calculated radial velocity 
for !l = 7, Re = 2072, ria = 18. 1 Calcula­
tion using functions of the third order8 , 

2 calculation using functions of the fifth order 

FIG. 5 

Radial velocity calculated for IX = 7, rla= 18 
by using fifth-order functions. Values of Re: 
1 2 900; 22072; 3 I 243; 4414; 541 
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FIG. 4 

Comparison of the calculated radial velocity 
for IX = 7, Re = 2072, ria = 25. 1 Calcula­
tion using functions of the third order8 , 

2 calculation using functions of the fifth order 
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The course of the dimensionless tangential velocity v in a cross-section between 
the discs is shown in Figs 8 and 9 (the ratio of vlvmax is plotted, where Vmax is the maxi­
mum value of von the disc surface). These curves are almost identical to the preceding 
ones8 The difference is that at higher Re values the absolute values are higher. 
The back tangential flow for Re = 2 900 represents more than 90% of the distance 
between the discs. The points of the minima on the curves have not changed appre­
ciably. 

Whereas the velocity fields show no essential changes, the static pressure is dif­
ferent (Fig. 10). For low Re values and large distances from the inlet, the difference 
of p- Po changes only little (Po is the static pressure at rja = 25), however at lower 
distances rja the newly calculated term in the expansion (7) becomes important 
(its value is positive for ex = 7). Therefore, all curves are directed towards infinity. 
It may be assumed that a further term could change this situation, however the values 
of p- Po beginning from a certain distance ria are sufficiently accurate regardless 
of further terms in the expansion (7). Curves 1 and 3 in Fig. 10 increase slowly 
from ria = 13 corresponding to sucking of the liquid between the rotating discs. 

FIG. 6 

Normal velocity calculated for IX = 7, ria = 

= 18 by using ·fifth-order functions. Values 
of Re: 1 2900; 2 2072; 3 1 243; 4414 

FIG. 7 

Normal velocity calculated for IX = 7, ria = 

= 25 by using fifth-order functions. Values 
of Re as in Fig. 6 
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Tangential velocity (vlv rnAx ) calculated for 
IX = 7, ria = 25 by using fifth-order func­
tions. Values of Re as in Fill. 6 

FIG. 10 

Dimensionless static pressure (p-Po) cal­
culated for IX = 7 by using fifth-order func­
tions. Values of Re: 1 290; 2414; 3622; 4829; 
51243 
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Tangential velocity (vlvma.) calculated for 
IX = 7, ria = 25 by using fifth-order func­
tions. Values of Re as in Fig. 6 
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For Re = 829, curve 4 decreases to zero from ria = 13 to 25, and curve 5 for 
Re = 1 243 is decreasing. It can hence be estimated that for (X = 7 and zero hydro­
dynamic resistance in the inlet the rate of flow between the discs will correspond 
to Re = 800 - 900. 

DISCUSSION 

A comparison of the results obtained with functions of the fifth and third orders 
for the Taylor criterion (X = 7 shows that the functions of the fifth order used in the 
present work do not lead to principally different velocity fields. They play almost 
no role in the region ria;;;:; 25 (beyond the inlet region), while for lower values 
of ria they lead to some changes of absolute values and characteristic poir.ts. The 
static pressure is markedly influenced, the newly calculated term in the expansion (7) 
being positive so that all curves in Fig. 10 increase towards + 00. The correctness 
of the calculation cannot be judged since a comparison with experiments is lacking. 
It can be assumed that the limiting values of ria givenS as 25 shifted somewhat 
towards the inlet region, i.e. to the centre of the discs. Although a calculation of func­
tions of a still higher order appears possible, no significant improvement of the 
theory can be expected. 

LIST OF SYMBOLS 

a 
p 

p 

Q 
r 
r 

Re 
II 

II 

I' 

w 

w 

z 

rx 

I' 

(() 

half-distance of the discs 
static pressure 
dimensionless static pressure (p/IlVI) 
volume rate of flow 
radius 
dimensionless radius (rxr/a) 
Reynolds number (avdv) 
radial velocity 
dimensionless radial velocity Cii/I',) 
tangential velocity 
dimensionless tangential velocity (Ii /v2) 
parameters equal to Q/41ta2 and (rov)'/2, respectively 
normal velocity 
dimensionless normal velocity (w/v2) 
distance from central plane 
dimensionless distance from central plane (r'-i/a) 
Taylor number, equal to a(ro/v)1/2 

kinematic viscosity 
angular velocity 
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